A látás jellemzői 3-ig

A távollátás osztályozása erősség szerint: Gyenge távollátás: 3 dioptriáig fakultatív hypermetropia Természetes alkalmazkodással kiegyenlítődik. Közepes távollátás:vagy 8 dioptria relatív hypermetrópia Az érintett csak kancsalítva tud közelre nézni.
Ha az érzékleteket aszerint osztályozzuk, hogy a tárgyról, eseményről milyen távolságból szerezhetünk információt, közeli és távoli érzékleteket tudunk megkülönböztetni. A látás az utóbbiak közé tartozik. A távoli érzékletek klasszikus meghatározásában kulcsfontosságú az a jellemző, hogy ezek segítségével anélkül is felfogjuk a tárgyak, események jellemzőit, hogy azoknak a közvetlen közelében kellene tartózkodnunk.
Bár a hallás és a látás is a távoli érzékelés kategóriájába tartozik, a látás olyan tárgyakat, eseményeket is közvetít, amelyeknek nincs hangjuk, vagy oly messze vannak, hogy a hangjukat nem halljuk.
A látás az érzékelési-észlelési folyamatok közül az egyik legfontosabb, úgynevezett vezető érzékleti a látás jellemzői 3-ig. Olyan lényeges információkat is közvetít az idegek befolyásolják a látást világban jelen lévő tárgyakról, amelyeket a hallás nem vagy kevésbé képes közvetíteni.
Ilyen a tárgyak színe, mérete, formája, téri helye, mozgása. Mindezeket a tulajdonságokat megfelelő részletességgel csak a fény képes közvetíteni, felfogásukra pedig különböző szemtípusok differenciálódtak az élővilágban.
A fény polarizációja[ szerkesztés ] Bővebben: polarizáció Polarizált fényről akkor beszélhetünk, ha a fényhullámokban az elektromos térerősségvektor rezgési síkja egységes irányú. A természetes, nem pontszerű fényforrásból kiinduló fény nem polarizált, benne vegyesen megtalálható mindenféle hosszanti síkban rezgő hullám. A fény polarizációjával kapcsolatos első leírás Erasmus Bartholinus dán professzor nevéhez fűződik, aki egy átlátszó izlandi pát kristályon keresztülnézve meglepve tapasztalta, hogy a tárgyaknak kettős képe látszik. Ez a jelenség a kettős törés, a kristályba belépő fény két külön nyalábra bomlik, amelyek közül az egyik — az úgynevezett ordinárius sugár — követi a törés törvényét, a másik, a rendellenes, vagy extraordinárius sugár azonban nem. A kétféle nyalábkomponens terjedési sebessége és polarizációs tulajdonsága különbözik.
Ezek receptorai végzik az átalakítást trandsz- dukciót. A látás tárgyalása során mindvégig azzal foglalkozunk, hogy miként közvetíti a látás a világot, mi jellemzi a látási észlelést. Ebben a fejezetben röviden áttekintjük mindazt, ami nélkül nehezen értenénk meg a magasabb szintű folyamatokat.
Elsőként arról lesz szó, hogy mi is a látható fény, miként alakul át a fény az emberi agy számára feldolgozható üzenetté, azaz akciós potenciálok sajátos mintázatává. A fénytől a retináig A fény A fény az elektromágneses sugárzás egyik formája.
- A látáskorlátozási gyakorlatok helyreállítása
- Bujkál a láthatatlan elől
- Fény – Wikipédia
- Távollátás – Wikipédia
- Látás helyreállítási tanfolyam Novikova
A fénynek az emberi szem számára látható spektruma az elektromágneses sugárzásfajtáknak csak igen szűk tartományát jelenti. A további sugárzástípusok — csökkenő hullámhossz szerint — a váltóáram, a rádióhullám, a mikrohullám, az infravörös és az ultraibolya sugárzás, a röntgenhullám és a gamma-sugárzás. Ezt szemlélteti a 3.
Az ilyen gyorsan terjedő sugárzással közvetített információnak az érzékelése-észlelése lehetővé teszi, hogy a tárgyakat, eseményeket megjelenésükkor minimális késleltetéssel, azaz azonnal lássuk. A fény része a környezetünket alkotó elektromágneses sugárzások tengerének.
- Visszatér a látás 100-ra
- Asztigmatizmus rövidlátás
- Műveletek a látás javítása érdekében
Ennek a tengernek, bármilyen sugárzás-összetevőjét is vizsgáljuk, hullámai vannak; kicsik és nagyok, gyorsan és lassan ismétlődők. A fény tehát hullámtermészetű jel, és hasonlóan minden ilyen jelhez, néhány alapvető jellemzővel írható le. A hullám magassága az amplitúdó, a másodpercenként érkező hullámok száma a frekvencia.
Távollátás
Magasabb frekvencia esetén például egy másodperc alatt jóval több hullám érkezik, mint alacsony frekvenciánál. Több hullám, azaz magasabb frekvencia esetén természetszerűleg a hullámcsúcsok távolsága kisebb lesz, azaz a fény hullámhossza kisebb lesz, mint alacsony frekvenciánál. A fény hullámainak ismétlődésére, eltérően a hanghullámoktól, a látás jellemzői 3-ig a frekvencia a konven- cionálisan használt jellemző lásd A hallás alapvető folyamatai című fejezetbena hullámhosszt használjuk mutatóként.
A hullámhossz tehát a fényenergia frekvenciájának vagy rezgésének mértéke, hullámhossznak nevezett egységekbe alakítva.
BUSINESS VS BUSINESS by Kids for $1000 w/ The Norris Nuts
A hullámhossz nem más, mint annak az útnak a hossza, amelyet a sugárzás egyes hullámok rezgések között megtesz. A hullámok távolságának mértékegysége a nanométer a méter milliomod része.
A látható fény tartománya a és a nanométer közé esik. Az elektromágneses sugárzásfajták teljes tartománya, kinagyítva a látható fény szűk hullámhossztartományában a teljes spektrum A 3.
Joggal elgondolkozhatunk azon, hogy mi lehet az oka annak, hogy pont erre a szűk tartományra rendezkedett be a Föld élőlényeinek a látószerve. Feltehetően fizikai és evolúciós okai vannak mindennek.
Nem valószínű például, hogy a sokkal szélesebb tartományt alkotó ultraibolya vagy infravörös fény felfogására kialakuló szem jól biztosította volna az élőlények alkalmazkodását a környezethez. Elsősorban azért nem, mert a rövidebb és a hosszabb hullámhosszú energia nem nagyon alkalmas a környezet tárgyainak, eseményeinek közvetítésére. A nanométernél rövidebb hullámhosszú fénnyel az a probléma, hogy hyperopia javulása földi légkör molekulái jelentős részben elnyelik, ezért a világ tárgyaihoz el sem jut, és így vissza sem verődhet.
A látható fénynél, tehát a nanométernél nagyobb hullámhosszal jellemezhető hullámokkal viszont az a probléma, hogy ezek részben vagy teljesen áthatolnak a tárgyakon, és nem verődnek visz- sza róluk ilyen az infravörös fény is. Ez egyébként a mikrohullámú készülékek működésének fizikai alapja.